Data Quality

Good product data management enables data quality.

Data is of high quality, if the data is fit for the intended purpose of use and correctly represents the real-world construct the data describes. Start with Data helps clients increase the accuracy, completeness and relevance of their product data  through better processes, data governance and technology. 

Talk to us about data quality

What is Data Quality?

Data has quality in relation to

  • the decisions which can be enhanced by their use
  • the actionable initiatives which ensue
  • the business insight, intelligence and knowledge gained


Any measure of quality needs rules and standards and when you agree on data quality rules, they should factor in the degree of value that data provides to an organisation. If data in a certain context has an extremely high value, this suggests that an extremely rigorous set of data quality rules are required for any data used in that context.

Why data quality is important to an organisation?

The adage of ‘garbage in, garbage out’ still holds firm when talking about data quality. If it is poor, that impacts on many levels of the business. 

What are the real costs to businesses arising from poor data quality?

  • Extra costs incurred by completing a work task with flawed data – and then having to do the task again


  • Damage to brand reputation – the impact of poor-quality data use will become more severe as the eCommerce world spawns new competitors and customers (individual and corporate alike) demand excellent data as the norm. Complaints will rise, returns will proliferate, and customers will turn to more reliable and trouble-free alternatives


  • Impact to eCommerce sales – If your eCommerce site cannot present sufficient product data to support a self-service buying decision, this is due to incomplete product data within your databases and how product data is syndicated (or not!) between trading partners


  • Damage to industry reputation among partners like suppliers and marketplaces


  • Poor decision making – Bad quality data means bad information, making any actionable insights untrustworthy – its inaccuracy or incompleteness could have business outcomes which put the company at risk


  • Reduction in operational efficiency – The opportunity costs drain productivity and create avoidable manual work. This leads to endemic ‘data wrangling’, ‘data munging’ and ‘data janitor’ work within organisations – a situation where, according to expert estimates, staff spend half their working life bogged down in collecting and preparing wayward digital data

Data Quality Dimensions

Data quality meets the following six dimensions:


how much of a data set is populated rather than left blank


how useful or relevant the data is based on its age


ensuring the data is a true reflection of the type of information you originally recorded


whether a data entry is duplicated, uniqueness is guaranteed by one recorded version of a data entry


defining whether the information you hold is correct or not (not the same as validity, which is a measure of the correctness of the type of data)


how far you can safely compare data across different storage areas, data sets and media and whether they have been recorded in the same way

Common data quality issues

Data can be degraded, corrupted and rendered unusable in a variety of ways;

Inaccurate data may contain incorrect personal details such as email addresses, phone numbers. It may also have missing information about product dimensions and measurements leading to problems with the size of delivery vehicles being used. These inaccuracies can be down to something as simple as a field inadvertently left blank or misspellings.

Non-compliant data doesn’t comply with regulatory or legal requirements.

Uncontrolled data becomes polluted if it is left without constant monitoring.

Unsecured data with no security protocols can be open to access and attack by hackers.

Static data is never updated, causing it to become obsolete. 

Dormant: data left in a repository loses its value – unshared, unused and essentially useless.

Understanding what data quality looks for your organisation is an important step in overcoming data quality issues. Overcoming data quality issues is possible through better product data management processes, data governance and technology. 

Data Quality Management

As information sources rapidly increase and legal and regulatory compliance becomes more complex, organisations need to access, ingest and reuse data from widely differing origins in a consistent and reliable way. Best practice for data quality management means taking a proactive approach, rather than a reactive approach. This involves checking and measuring the degree of data quality before it enters a company’s core systems.

Data Quality Maturity Model

Using the 5-stage data quality maturity model helps to evaluate the degree of data quality maturity which exists in a given organisation. A scale from worst to best practices would identifies;

  • A purely reactive approach – no plan, no standards, essentially firefighting.
  • Siloed management – each department or area do what they like without reference to the larger picture.
  • Coordination – there is a common acceptance and understanding of data problems, and steps are being taken to remedy them.
  • Governed procedures and policies – there is a framework of stewardship, and policies in place.
  • Proactive data quality management – procedures, policies and AI-driven functionalities are in place to act on data quality problems before they occur

Data governance

Best practices in data quality management usually refer to a unified platform under a data governance framework. This means a set of initiatives which are also applied to PIM projects:

By using unified procedures for monitoring and scoring data quality directly within a governance framework, organizations can implement quality controls to ensure end-to-end data quality from source to destination.

Data Quality Tools

Data quality tools are designed to enhance the accuracy, completeness, relevance and consistency of a company’s data. Most tools fall into four general categories:

  • Data Cleansing (or scrubbing)
  • Data Auditing
  • Data Migration
  • Data integration


Some will focus on one category, but as data analytics technology matures, cross-functional solutions are becoming more common. Data quality informs many cross-functional elements of an organisation including master data management and meta data management, and the best tools for your task are determined by your case’s specific needs. you choose a data quality solution, you will need to understand which of these areas you need to focus on. 

Of the many software providers, most offer specific capacities;

– data integrity and data cleansing tools

– drag-and-drop graphical interface

– near real-time synchronisation of data

– merging of duplicate records

– deduplicating import files

– measurement of performance against internal or external metrics and standards


With advances in AI capabilities, based on semantic technology data quality tools make use of semantic discovery and built-in pattern recognition and can automate repeatable tasks on a scheduled basis.


Data Quality Consulting Services

Our Data Quality consultancy services help clients overcome data quality issues through better product data management processes, data governance and technology.  Our three phase Product Data Quality Assessment process will identify poor quality data, estimate the impact on the business, and to advise on actions to improve your data quality.

Strategy & Implementation Services

Transform your product information challenges into business benefits with our strategy and implentation services. So, you can fuel revenue growth, free up your team, and reduce costs and risk. 

Product Data Management Strategy

Sometimes knowing where to start with your product data can be the toughest challenge of all. We help determine the right course to meet your business goals.

PIM & MDM Platform Selection

Choosing the right Product Information Management (PIM) or Master Data Management (MDM) platform can be daunting and time-consuming. We help you choose the right platform for now and in the future.

PIM & MDM Implementation

Implementing a PIM or MDM platform is not for the faint of heart. We deploy leading solutions and business change that drive business results.

Managed Services

Even with the streamlined processes and great technology, managing the vast amounts of product data needed to power your business is still resource intensive. To that end, we offer a range of cost-efficient managed services to augment your team on an ongoing basis.

Product Data & Content Services

Deliver high-quality, enriched data across your sales channels and systems with a full range of content services—all under one roof. 

Data Migration

Your systems landscape is constantly evolving. Ensure the data you move into your new systems meets your quality goals with our turnkey data migration service.

PIM & MDM Platform Support

Your PIM and MDM platforms form the backbone of your data management systems. It’s essential that they stay up and running and tuned for maximum performance to minimize business disruption.

Ready to take the next step in your product data journey?

For retailers and distributors

We have a highly experienced team of PIM consultants ready to transform your product information challenges into business benefits – Ben Adams, CEO

For brands and manufacturers

We can help your business compete and thrive on the digital shelf – Beth Parker, Lead Consultant